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DOE Atmospheric Radiation DOE Atmospheric Radiation 
Measurement (ARM) ProgramMeasurement (ARM) Program
• Objective: to improve the treatment of clouds and 

radiation in global climate models
• Approach: 

– Collect a long-term dataset of atmospheric state, cloud 
and aerosol properties, and radiative fluxes at a variety 
of climatologically interesting sites

– Confront the models with this data to improve the 
parameterizations used within the models



Location of ARM SitesLocation of ARM Sites



Atmospheric Emitted Radiance Atmospheric Emitted Radiance 
Interferometer (AERI)Interferometer (AERI)
• Hardened, automated longwave interferometer

– Nominal spectral range: 3-19 µm
– Range extend to 3-25 µm for deployment in the Arctic
– Spectral resolution: ~1 cm-1

• Absolute calibration better than 1% of the ambient 
radiance (3-sigma)

• Provides ground-truth for evaluation of infrared 
radiative transfer models

• Data used in retrievals of temperature and water 
vapor profiles, cloud properties, aerosol 
properties, trace gases, etc.



Mug shots of the AERIMug shots of the AERI



Clear Sky AERI SpectraClear Sky AERI Spectra



Early Use of AERI in ARM: Early Use of AERI in ARM: 
Radiative transfer model evaluationRadiative transfer model evaluation

• AERI has spectral resolution to validate line-by-line radiative 
transfer (RT) models
– These models, once validated, can be used to build faster RT models

• Established a “Quality Measurement Experiment” (QME) to 
evaluate:
– AERI observations
– Physics in the LBLRTM, especially the WV continuum
– Atmospheric state used in the model (esp. the WV profile)

• Temporal resolution of AERI set to 3-min sky averages every 
8 min; ideal for this clear-sky problem

• Temporal resolution also ideal for thermodynamic profiling 
• Good progress made in this arena



AERI AERI –– LBLRTM ResidualsLBLRTM Residuals
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Moving towards cloudsMoving towards clouds……
• Infrared radiance provides an excellent constraint when 

retrieving cloud properties
• Algorithms have been developed that use AERI data in 

combination with lidar and/or radar
• 3-min sky average every 8 min was unsatisfactory, given 

cloud conditions can vary markedly in this period
• Prototyped a “rapid-sample” mode in July 2002, which 

allows 12-s sky averages to be collected every 20-30 s
• ARM is upgrading all AERIs to run in rapid-sample mode
• Decreasing the sky averaging interval increases the random 

error in the data…



PCA noise filterPCA noise filter

• PCA provides a mechanism to reduce the 
uncorrelated random error in the observations

• Challenge: find an objective way to determine the 
“proper” number of PCs to use in the 
reconstruction
– Important as ARM’s data system requires all processes 

be automated; human interaction not really allowed in 
the process

– Many AERIs to process (ARM currently has 6 AERIs
in the field)

– Ideally, we hope to avoid repeated reconstructions to 
find the proper number of PCs to use



PCA noise filter methodPCA noise filter method
1. Normalize each observed spectrum with the 

estimated NESR
2. Compute covariance matrix C = MT M
3. Derive PCs (eigenvectors) and eigenvalues of C
4. Determine the number k of PCs to use in the 

reconstruction
5. Project each spectrum onto the vector space spanned 

by these k PCs
6. Reconstruct the data using the projection coefficients 

and the k PCs
7. Multiply each spectrum by the NESR used in step 1



jiforijiii ≠== 0, DD λ D is a diagonal matrix of eigenvalues λ

Some errataSome errata
TVDUC =

Singular value decomposition of the 
covariance matrix C

VU =
Columns are real-valued eigenvectors (PCs) 
since C is real-valued and symmetric. 
Eigenvectors of covariance matrix C are 
same as for data matrix M!
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λ Sum of the eigenvalues is the total variance 
in the data

nλλλλ ≥≥≥≥ ...321
Typically arrange eigenvalues into 
descending order (U, V accordingly)

( )Tknkkknnn ,,,,
ˆ VDUC = Reconstruction reduces dimensionality of 

problem if k < n



Example data used hereExample data used here……

• Operational ARM AERI (the “AERI-01”) at ARM 
SGP central facility

• Deployed a second AERI system at SGP site in 
Oct-Nov 2003
– Univ of Wisconsin – Madison in “Bago”
– This unit was in rapid-sample (RS) mode

• Noise filter applied to RS data; comparisons with 
AERI-01 used to help evaluate the filter



Example AERI Example AERI obsobs and NESRand NESR



Determining the Determining the ““properproper”” k   k   (1)(1)
• Many subjective methods being used

– E.g., Percent Cumulative Variance below some threshold

– Fast, as it works directly from the eigenvalues
– Problem: how to set the threshold?
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Determining the Determining the ““properproper”” k   k   (2)(2)

• More computational expensive methods
– E.g., Reconstruction Score below 1

– Expensive, as one must reconstruct data for all k
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Determining the Determining the ““properproper”” k   k   (3)(3)

• Chemical analysis community has been using PCA 
for decades

• Edmund Malinowski (in a series of papers) showed:
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λx associated with PCs that contain mixture of true signal and random error
λo associated with PCs that contain uncorrelated random error only

( ) ( ) ( )222 XEIERE +=

Real “error”

Imbedded “error” Extracted “error”



E.R. E.R. MalinowskiMalinowski’’ss FormulationsFormulations

• Important: Noise must be random (gaussian) and 
uniform (i.e., constant standard deviation for all 
times and spectral elements)
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Real Error (RE) exampleReal Error (RE) example

As k increases, this 
implies that more 
PCs contain a 
mixture of signal and 
noise (i.e., more λx)

So the RE in the data 
is smaller because 
the “noise sphere”
has a smaller radius

( ) ( ) ( )222 XEIERE +=



Imbedded Error (IE) exampleImbedded Error (IE) example

• Well defined minima at k = 125 (this example)
• Is this the ideal value for k ?



Correlation in the extracted data       Correlation in the extracted data       
((υυii, , υυjj), ), ∀∀ i i ≠≠ j j 

kIE = 125 

Significant 
number of 
spectral pairs 
have fair 
correlation when 
k = 125, which 
implies that 
spectrally 
correlated 
information was 
lost



Factor Indicator Function (IND)Factor Indicator Function (IND)

• Problems with using IE to determine k
– Occassionally, IE does not have well defined minimum, 

as IE places too much emphasis on outliers
– Significant correlation among different pair of spectral 

elements can remain in XE, implying signal was lost

• Malinowski developed another empirical function, 
called factor indicator function (IND), which 
overcomes the limitations of the IE function

( )2
)()(

kn
kREkIND

−
=



Factor Indicator Function (IND) Factor Indicator Function (IND) 
exampleexample

kIND = 250

kIE = 125 My experience: 
kIND ≥ kIE



Correlation in the extracted data Correlation in the extracted data 
((υυii, , υυjj), ), ∀∀ i i ≠≠ j j 

kIE = 125 
kIND = 250

Significantly 
smaller 
correlation 
between pairs of 
spectral elements 
when using IND-
determined k for 
reconstruction



Impact of noise filter: reduction in Impact of noise filter: reduction in 
clear sky varianceclear sky variance

St. Dev.
0.461 RU
0.243 RU
0.278 RU



Reduction of clear sky varianceReduction of clear sky variance
• NSA AERI system, April 2004

Clear sky, detrended observations Unfiltered minus 
filtered residuals

“Window” at 900 cm-1

“Opaque” at 675 cm-1StDev reduced 4x

StDev reduced 2.6x



Noise filter in different scenes: an Noise filter in different scenes: an 
example of clear sky vs. cloudyexample of clear sky vs. cloudy

Clear sky
Cloudy sky

No apparent change in 
the character of the 
extracted variance 

(i.e., the unfiltered –
filtered radiance)



Benefits of rapid sampling and Benefits of rapid sampling and 
noise filteringnoise filtering

• Able to resolve 
high temporal 
features in clouds

• NF reduces 
uncertainty in 
retrieved 
products 
considerably



Location, seasonal, and Location, seasonal, and 
instrumental dependence of instrumental dependence of kk
• ARM has AERIs in three different environmental 

regimes (tropics, mid-latitudes, Arctic)
• AERIs collect data continuously
• Two distinct types of AERIs used in ARM

• Questions:
– Is there any dependence of k on the AERI instrument?
– Is there any seasonal or climatological variability in k?



Location, seasonal, and Location, seasonal, and 
instrumental dependence of instrumental dependence of k   k   (1)(1)

Instrument 
or 

location?



Extended range AERIExtended range AERI--ERs at NSA ERs at NSA 
have different noise performancehave different noise performance……

• AERI-ER detectors 
optimized to have 
improved 
performance in       
15-25 µm region

• Larger “noise sphere”
• Small-scale 

atmospheric 
variability may be 
“lost” in larger noise 
sphere, resulting in 
smaller k

This likely explains majority of difference between SGP and NSA k’s



Location, seasonal, and Location, seasonal, and 
instrumental dependence of instrumental dependence of k   k   (2)(2)

Instrument or 
real 

atmospheric 
seasonal 

dependence?



Seasonal dependence of Seasonal dependence of kk: : 
instrument or atmosphere?instrument or atmosphere?
• Atmospheric conditions

– Change from more synoptic conditions in winter to 
more convective conditions in summer

– Changes character of clouds, with more broken clouds 
in summer

– Increase in k
• Calibration equation

– Summertime has warmer ambient temperatures
– Delta-T between HBB and ABB decreases, resulting in 

increased uncertainty due to calibration
– Increases noise sphere
– Decrease in k

Seasonal dependence of k’s likely due to real atmospheric variability 



Location, seasonal, and Location, seasonal, and 
instrumental dependence of instrumental dependence of k   k   (3)(3)

What is 
this?



SummarySummary
• Factor Indicator Function (IND) method provides 

a fast and objective way to determine k
– IND applied to the eigenvalues

• Noise reduction depends on 
– Instrument characteristics
– Spectral region
– Instrument location
– Season

• PCA noise filter reduces random error associated 
with rapid-sampling, but increased noise level 
results in real atmospheric variability being “lost”
– Can recover this signal by averaging raw data in time



Manuscript in press (JTECH)Manuscript in press (JTECH)
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