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DOE Atmospheric Radiation iy

Measurement (ARM) Program

* Objective: to improve the treatment of clouds and
radiation 1n global climate models

e Approach:

— Collect a long-term dataset of atmospheric state, cloud
and aerosol properties, and radiative fluxes at a variety
of climatologically interesting sites

— Confront the models with this data to improve the
parameterizations used within the models
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_Location of ARM Sites
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Atmospheric Emitted Radiance iy

Interferometer (AERI)

 Hardened, automated longwave interferometer
— Nominal spectral range: 3-19 um
— Range extend to 3-25 um for deployment in the Arctic
— Spectral resolution: ~1 cm-!

» Absolute calibration better than 1% of the ambient
radiance (3-s1igma)

e Provides ground-truth for evaluation of infrared
radiative transfer models

« Data used 1n retrievals of temperature and water
vapor profiles, cloud properties, acrosol
properties, trace gases, etc.
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Mug shots of the AERI
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ARM
Early Use of AERI in ARM:

Radiative transfer model evaluation

AERI has spectral resolution to validate line-by-line radiative
transfer (RT) models

— These models, once validated, can be used to build faster RT models
Established a “Quality Measurement Experiment” (QME) to
evaluate:

— AERI observations

— Physics in the LBLRTM, especially the WV continuum

— Atmospheric state used in the model (esp. the WV profile)

Temporal resolution of AERI set to 3-min sky averages every
8 min; 1deal for this clear-sky problem

Temporal resolution also 1deal for thermodynamic profiling
Good progress made in this arena
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ARM
Moving towards clouds...

» Infrared radiance provides an excellent constraint when
retrieving cloud properties

« Algorithms have been developed that use AERI data in
combination with lidar and/or radar

e 3-min sky average every 8 min was unsatisfactory, given
cloud conditions can vary markedly 1n this period

e Prototyped a “rapid-sample” mode in July 2002, which
allows 12-s sky averages to be collected every 20-30 s

 ARM is upgrading all AERISs to run in rapid-sample mode

* Decreasing the sky averaging interval increases the random
error in the data...



ARM
PCA noise filter

 PCA provides a mechanism to reduce the
uncorrelated random error in the observations

e Challenge: find an objective way to determine the
“proper’” number of PCs to use 1n the
reconstruction

— Important as ARM’s data system requires all processes
be automated; human interaction not really allowed in
the process

— Many AERIs to process (ARM currently has 6 AERIs
in the field)

— Ideally, we hope to avoid repeated reconstructions to
find the proper number of PCs to use
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PCA noise filter method

1.

Normalize each observed spectrum with the
estimated NESR

2. Compute covariance matrix C=M' M

Derive PCs (eigenvectors) and eigenvalues of C

Determine the number K of PCs to use in the
reconstruction

Project each spectrum onto the vector space spanned
by these k PCs

Reconstruct the data using the projection coefficients
and the k PCs

Multiply each spectrum by the NESR used 1n step 1



Some errata
C=UDV'

D; =4, D; =0 fori = |
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ARM

Singular value decomposition of the
covariance matrix C

D i1s a diagonal matrix of eigenvalues A

Columns are real-valued eigenvectors (PCs)
since C 1s real-valued and symmetric.
Eigenvectors of covariance matrix C are
same as for data matrix M!

Sum of the eigenvalues 1s the total variance
in the data

Typically arrange eigenvalues into
descending order (U, V accordingly)

Reconstruction reduces dimensionality of
problem if kK <n
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Example data used here...

* Operational ARM AERI (the “AERI-01"") at ARM
SGP central facility

e Deployed a second AERI system at SGP site in
Oct-Nov 2003
— Univ of Wisconsin — Madison in “Bago”
— This unit was 1n rapid-sample (RS) mode
* Noise filter applied to RS data; comparisons with
AERI-01 used to help evaluate the filter
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ARM
Determining the “proper” k (2)

 More computational expensive methods
— E.g., Reconstruction Score below 1

1 ) 2
RSc(k) {HZ(IV ~R,(K)) }

v

— Expensive, as one must reconstruct data for all k
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Determining the “proper” k (3)

n k n
Z’li = Zﬂ,’f T Z/lc:
i=1 i=1

iI=k+1

A* associated with PCs that contain mixture of true signal and random error
A° associated with PCs that contain uncorrelated random error only

e Chemical analysis community has been using PCA
for decades

 Edmund Malinowski (in a series of papers) showed:
(RE) =(IE) +(XE)
Real “error”

Imbedded “error” Extracted “‘error”
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E.R. Malinowski’'s Formulations

o _% E n _%
> A k > A
RE(k) i tl(_n+— k) IE(k) L t nl(_n+— k)

- Ik
24
: ' t = number of temporal samples
XE (k) = [ I=k4l n = number of spectral elements
Itn Assumes that t > n

e Important: Noise must be random (gaussian) and
uniform (1.€., constant standard deviation for all
times and spectral elements)
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ARM
Factor Indicator Function (IND)

* Problems with using IE to determine k

— Occassionally, IE does not have well defined minimum,
as IE places too much emphasis on outliers

— Significant correlation among different pair of spectral
elements can remain in XE, implying signal was lost

 Malinowski developed another empirical function,
called factor indicator function (IND), which
overcomes the limitations of the IE function

RE (k)

(n—k)’

IND(K) =
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Benefits of rapid sampling and 4

noise filtering
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» Able to resolve
high temporal
features in clouds

* NF reduces
uncertainty in
retrieved
products
considerably
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Location, seasonal, and

Instrumental dependence of k

e ARM has AERIs in three different environmental
regimes (tropics, mid-latitudes, Arctic)

 AERIs collect data continuously
e Two distinct types of AERIs used in ARM

e Questions:
— Is there any dependence of k on the AERI instrument?

— Is there any seasonal or climatological variability in kK?
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Seasonal dependence of K: iy

Instrument or atmosphere?

e Atmospheric conditions

— Change from more synoptic conditions in winter to
more convective conditions in summer

— Changes character of clouds, with more broken clouds
In summer

— Increase in kK

 (Calibration equation
— Summertime has warmer ambient temperatures

— Delta-T between HBB and ABB decreases, resulting in
increased uncertainty due to calibration

— Increases noise sphere
— Decrease in K

Seasonal dependence of k’s likely due to real atmospheric variability
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ARM
Summary

* Factor Indicator Function (IND) method provides
a fast and objective way to determine k

— IND applied to the eigenvalues

e Noise reduction depends on
— Instrument characteristics
— Spectral region
— Instrument location
— Season

 PCA noise filter reduces random error associated
with rapid-sampling, but increased noise level
results 1n real atmospheric variability being “lost”

— Can recover this signal by averaging raw data in time
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Manuscript in press (JTECH)

Noise Reduction of Atmospheric Emitted
Radiance Interferometer (AERI) Observations
using Principal Component Analysis

D.D. Turner, R.O. Knuteson, H.E. Revercomb,
C. Lo, and R.G. Dedecker

Email: dturner(@ssec.wisc.edu
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